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Abstract— This paper investigates the feasibility of using 
bit-serial architecture as a method of designing an extremely 
low-power and low-cost neural network processor for epilepsy 
seizure prediction. The concept of a novel bit-serial data 
processing unit (DPU) is presented which implements the func-
tionality of a complete neuron and uses bit-serial arithmetic. 
An array of these DPUs are controlled by a simple finite state 
machine. We show that epilepsy detection through such low-
cost and low-energy dedicated neural hardware is feasible. 
The proposed processor extracts epileptic seizure characteristics 
from electroencephalogram (EEG) waveforms. In order to 
facilitate the classification of EEG waveforms we develop a 
dedicated feature extraction hardware that provides inputs 
to the neural network. This approach has been tested using 
various network configurations and has been compared with 
related work. A sample complete system which can predict 
epileptic seizures with high accuracy has been implemented 
on an ALTERA Cyclone V FPGA and the hardware uses 
3088 ALMs which constitutes about 5% of the Cyclone V A7 
capacity.

I. INTRODUCTION

In recent years, the World Health Organization (WHO) 
have found that 50 million of the world’s population are 
affected by a hidden disability known as epilepsy [1]. 
Approximately 80% of the reported epileptic cases occur 
in developing countries where readily available treatment
facilities and medications are not generally accessible. Cur-
rently, epilepsy is commonly treated with the use of anti-
epileptic drugs (AEDs). Early and accurate seizure pre-
diction is essential in preventing seizures by the timely 
administration of such drugs. Existing state-of-the art seizure 
prediction systems rely on complex software methods and
require significant C PU p ower. T hese m ethods u se elabo-
rate mathematical models of non-linear dynamic systems
which are solved using time-domain or frequency-domain 
analysis [2]. Artificial N eural N etworks ( ANNs) h ave also
been shown to predict epileptic seizures reliably with an
accuracy over 90% [3]. ANNs are an efficient classifier used 
commonly in conjunction with linear numerical methods of
feature extraction to facilitate epilepsy detection. However, 
as of today, there is still no reliable, home-based and low-
cost seizure prediction system which could be used as an 
aid for timely administration of AEDs and used by an
individual epileptic patient. In this paper we propose to
consider simple, dedicated hardware neural networks that are
optimised for seizure prediction from electroencephalogram
(EEG) waveforms and can be personalised to reflect the
characteristics of an individual patient. Such systems can be
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implemented in the form of affordable, wearable equipment
without the need to resort to complex software and powerful
computers. Firstly, we briefly review state-of-the-art seizure
detection methods. We focus on linear seizure prediction
models [4] which have the advantage of simplicity and
versatility compared with non-linear ones that are capable
of addressing the non-stationary nature of the EEG signals.
Secondly we present a dedicated hardware implementation
of an artificial neuron, based on a bit-serial Data Processing
Unit (DPU) which is extremely small and can be used in vec-
tor arrangements where a single sequential controller drives
an array of such DPUs. We demonstrate that the proposed
DPU has has the capability of simulating a biological neuron
and can be expanded into a neural network that successfully
differentiates between epileptic seizure and non-seizure EEG
waveforms. The EEG waveforms used in our investigation
are taken from real patients and available online [5] in public
domain.

II. CONVENTIONAL CLASSIFICATION METHODS FOR
EPILEPSY DETECTION

Here we summarise briefly the main conventional classifi-
cation techniques for machine learning which are applicable
to medical diagnosis including epilepsy. These methods are
the Naive Bayes Classifier, Decision Tree Classifier, k-
Nearest-Neighbours (k-NNs) Classifier, support vector ma-
chines (SVM) and classifiers based on neural networks. They
are briefly reviewed in the following subsections.

A. Naive Bayes (NB) Classifier

NB is a simple probabilistic classifier utilising the Bayes
Theorem. It can also be considered as a conditional prob-
ability model. This classifier is often used in data mining
and it is also applicable to automated medical diagnosis thus
making it suitable for epilepsy detection. The Naive Bayes
classifier uses the independence assumption that focuses on
each feature independently of each other while ignoring any
possible correlation between the features [6]. One of the main
advantages of using the Naive Bayes classifier is the limited
use of training data for classification.

B. Decision Tree Classifier (DTC)

Decision trees are an efficient way to classify sets of
data. As a sample is only tested against a subset of the
classes, traversing a decision tree does not require complex
computations. It has been suggested recently [7] to use
neural networks are used in the design of a DTC. There
are a few disadvantages when using a decision tree. It will
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not be as accurate as the other classifiers. Furthermore,
the performance of the DTC will heavily depend on the
effectiveness of the particular design [7]. DTCs tend to be
less robust than other methods as a very small change in the
training datasets might result in a huge change in the output
prediction.

C. k-Nearest-Neighbours (k-NN) Classifier

A k-NN classifier is a non-parametric, non-linear yet
relatively simple classifier. This classifier is effective when
dealing with large data sets. It relies on class assignment
based on a nearby data set where similarities between the
samples used are measured with a distance function. A recent
work [8] points out that k-NN is applicable to medical
classification problems. The basic algorithm for a k-NN
classifier is relatively similar to that of a neural network
classifier. Both have a training stage and a prediction stage.
The training stage of the k-NN classifier involves all the
different samples which are stored in a form of memory. A
neural network, on the other hand, uses the training stage to
calculate the weights with the highest accuracy to predict a
target output.

D. Support Vector Machine (SVM) Contribution to Epilepsy
Detection

SVMs have been used to analyse EEG signals which
contain a great deal of detail about the brain activity. A
smart sensor IC was proposed [9] with a CMOS chip that has
an area of 0.35um for scalp EEG acquisition. This chip is
integrated with the local processing of the sensor node. Fea-
ture vectors of the signal are extracted and classified through
machine learning. In order to produce a functional system
for epilepsy detection, a number of sensors would have to
be worn to achieve spatial correlation. Each individual output
of the classifier could then be combined to detect the onset
of an epileptic seizure.

Support Vector Machines have also been used in lung
cancer diagnosis in conjunction with image processing tech-
niques [10]. SVMs are suitable for such applications as they
possesses the advantage of high generalisation and an as-
surance of global optimisation. They have been successfully
used in many other fields that require classification.

E. Automatic Epilepsy Detection Using Artificial Neural
Networks (ANNs)

It is possible that the prediction of the onset of a seizure
occurrence can be achieved with the assumption that the EEG
generated is a very complex but linear system. However,
the brain is non-linear. By analysing the power spectrum,
it is also possible to continue the analysis through a linear
approach [11]. Back propagation neural networks include
two stages, a forward propagation stage and a back prop-
agation stage. The normal neural operation uses the forward
propagation to pass along the EEG sample provided along
the input layer to the hidden layer where calculations are
being made which in turn is passed to the output layer
to produce the output sample of the neural network which

can determine if a seizure occurrence will appear with the
input EEG sample. The back propagation stage includes
a learning process which reduces the error between the
calculated output sample and the target output (possibility of
seizure occurrence). This process is performed by adjusting
the weights of the neural network in real time [11]. Spiking
Neural Networks (SNNs) are a third generation ANNs that
have been researched in recent years [12]. SNNs are different
from other forms of ANNs as each individual spiking neuron
propagates information by the timing of the neuron, rather
than using the rate of the spikes. It was also found that
SNNs are effective in brain modeling [13], [14]. This is
useful as methods can be sought to detect epilepsy through
the process of modelling the brain of an epileptic patient.
Hardware implementations of SNNs were performed using
NVIDIA CUDA [12]and the SpiNNaker [15]. The latter has
the capability to simulate and implement the SNN which
is used in brain modelling mentioned above. There are
a few advantages and disadvantages when using hardware
implementation on NVIDIA GPUs. The constant read-only
memory is proved to have higher access speed than global
memory. However, there is a requirement for more graphics
processing unit (GPU) memory. Accessing the parameters of
an individual neuron is also slow [12].

III. BIT-SERIAL ARCHITECTURE WITH RELATION TO
NEURAL NETWORK PROCESSORS

Bit-serial architectures which process data bit by bit during
each clock cycle are largely historic. Most modern processors
use bit-parallel data processing for performance. However,
when high performance is not a priority but instead the
emphasis is on very low-power and low-cost bit-serial com-
puting has its advantages. In modern applications bit-serial
processing is still used sometimes in digital filters where
input samples are processed in a bit-serial manner, although.
Usually, however, the overall samples included in the filter’s
window frame are processed in parallel.

IV. A BIT-SERIAL HARDWARE NEURAL NETWORK

A novel approach is proposed to implement a low-cost
hardware neural network which is primarily intended for
use in portable equipment to predict epilepsy seizures. We
consider the classical model of a perceptron that receives a
vector input pattern xi where i = 1, . . . , I and I the size of
the vector. These inputs are weighted by the weight vector of
a given perceptron (w1, w2, . . . , I) which is obtained in the
off-line learning process. The neuron is a summation unit that
performs the sum of products to calculate its output u. The
output u is then processed by the activation function used
in the output neuron. In our case the activation function is a
simple threshold operation converting u into a logic signal
y which has the value of ‘0’ or ‘1’.

u =
I∑

i=1

wixi (1a)

y = Φ(u) (1b)
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The conventional bit-serial architecture can model this
behaviour with ease and complex feed forward neural net-
works (FNNs) based on such neurons can be created using
simple, regular hardware structures controlled by simple
state machines. The learning process of such designs can
be accomplished off-line by using simulation software.

Each DPU in a given FNN layer performs the same
operations and receives control signals issued by the layer
control FSM to carry out the bit-serial additions and mul-
tiplications. This way, an FNN layer becomes an SIMD
machine controlled by a single FSM. The development of
an FPGA implementation of the neural processor is fast
straightforward. We have used an FPGA implementation to
carry out a number of test and study the potential of the
proposed processor to classify epileptic EEG patterns. Table
I shows that an 8-bit DPU requires only 24 Logic Elements
(LEs) on an inexpensive Altera Cyclone V FPGA, out of over
300,000 LEs available on a Cyclone V chip. The control
path of for a network with three layers requires 103 LEs
(Central Control FSM: 3 LEs, 2 layer FSMs: 18 LEs each
and 2 counters: 32 LEs each). This compares favourably
with the size of the datapaths of typical bit-serial processors
mentioned in the Table. Bearing in mind that the control
logic of the proposed approach requires only simple state
machines, rather than fully-fledged program control paths
used in general-purpose processors, expected overall benefits
of an ASIC implementation will include faster operation and
lower power consumption.

Hardware Development LE
Chip Count

Bit Array [16] ASIC 56 Altera
Processor Equivalent LEs

Cellular Processor [17] Virtex 5 26 Altera
(Data Path) equivalent LEs

Proposed Neural Processor Cyclone V 24 LEs

TABLE I: Cost comparison between three different proces-
sors from previous work [18].

V. PROPOSED FEATURE EXTRACTION HARDWARE -
SLOPE CALCULATOR

In order to complete the wearable seizure detection sys-
tem, it is imperative to include a novel and simple feature
extraction hardware to provide the inputs to the BSNN. The
proposed hardware will use picoMips as the basis of the
design.

The data path consists of two synchronous RAM and a
simple subtractor in the form of a ALU module. The data
path is controlled by a simple FSM module. The hardware
cost requires only 13 ALMs when synthesised on a Altera
Cyclone V chip. This hardware will serve as a mean of
extracting slope of the EEG waveform from two adjacent
points on the sample.

VI. EEG WAVEFORM CLASSIFICATION

The input data used in the evaluation of the proposed FNN
was obtained from an on-line open source [5] which provides
sets of EEG waveforms for both seizure free instances and
EEG waveforms during seizures taken from the brain (epilep-
togenic zone) of the same patient. Figure 2 shows an samples
of an epileptic and a normal EEG. Our results we obtained
from a number of implementations of the proposed FNN
and were evaluated using standard metrics [19] in seizure
detection, namely: the sensitivity (TPR), specificity (TNR),
positive predictive value (PPV) and negative predictive value
(NPV). The hardware implementations were trained offline
in MATLAB and then tested with two sets of 100 EEG
waveforms. As part of the validation process, the same input
data used for training was used to test the n-1-1 network (i.e.
n neurons in the input layer, one neuron in the hidden layer
and one output neuron).

It was found that the n-1-1 network configuration exhibits
very bad recognition rates. From the results it can be
concluded that a multi-input single neuron in the hidden
layer is not sufficient to detect epilepsy accurately. Therefore,
other configurations have been tested, for example a 40-n-1
network with n hidden neurons. The DPUs used in these tests
had a 12-bit precision to provide high accuracy. In summary,
the network configuration 40-30-1 provides promising results
in terms of detecting epileptic waveforms. Further tests have
been conducted using a larger number of inputs and more
hidden layers to further validate and optimise the network.

A. Hardware Network Validation and Testing

As the main purpose of this work is to distinguish seizure-
free waveforms in epileptic patients from seizure waveforms,
healthy patient brain waveforms are not included in the de-
sign testing. Results of the tests carried out at the validation
stage have been compared with those of various software
methods used in epilepsy detection [3].

Using the training datasets, the 11-7-1 hardware neural
network with a 12 bit architecture has a specificity and
sensitivity of 60%. It could recognise 30 out of 50 wave-
form used to train the network in a MATLAB model. The
feature vector values consist of the same metrics as those
provided in related work [3]. These values contain mean
(XMean), median (XMedian), mode (XMode), standard de-
viation (XStdDev), first quartile (XQ1), third quartile (XQ3),
inter-quartile range (XIQR), skewness (Xskew), kurtosis
(Xkurtosis), minimum (XMin), and maximum (XMax). Ten
other network configuration have been designed and tested.
These configurations analysed using MATLAB in order to
determine the mean square error (mse) in each case. From
Table II, it can be seen that a single hidden layer with 100
neurons has a similar performance to that of a double layer
network with 10 neurons in each layer.

B. EEG Waveform Slope Used as Feature Vector

In the previous subsection, a feature vector consisting of
various statistic metrics is used. The maximum accuracy was
80% when tested using additional data. However, disparities
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S_A

i = sample count
j = bit count for x
k = bit count for w
xi = external input
wi = corresponding weight to address [i]
wik = bit extracted from weight
xij = bit extracted from input

Wmem

i

wi

k

x0

j

xij

wik

Address

Xn-1

D0

Dn-1

i

y[j]

FAa

Carry 
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cin
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y
y[j]

PH[0]

P[0]

S_A = Addition of Partial Product select input
S_H = Addition of Multiplicand to previous 
value
y[j] = LSB of y for partial product addition
a = AND product of wik and xij

cout, cin = carry bit
P = Partial Product register, PH and PL
PH = High Part of P
PL = Low Part of P

S_A

S_H S_A

*Note: Multiplication :  S_H = 1, 
S_A = 0 

Addition of Partial Product : S_H = 
1, S_A = 1

wi, xi = n bits
wik, xij = 1 bit

PH[0] = LSB of PH
P[0] = LSB of P
b = PH[0] or P[0] addition input for FA

ALU

Fig. 1: DPU Design with logic element counts included in table.

Epilepsy

Normal

Fig. 2: Sample EEG input data.

Network Correct recognition Correct recognition
Configuration against training data against additional tests

11-25-1 52% 60%
11-40-1 56% 50%
11-65-1 60% 30%
11-100-1 66% 55%

11-10-10-1 62% 60%
11-20-20-1 56% 80%
11-30-30-1 58% 60&
11-40-40-1 64% 45%

11-10-10-10-1 54% 50%
11-5-5-5-1 56% 30%

TABLE II: Correct recognition rates of different hardware
ANN configurations.

when testing the same network configuration against the
training data should be noted. In this respect, the 11-20-20-1
network shows some promising results. In this section, some

experiments have been conducted to obtain better accuracy
by using the slope of the EEG waveform at different points
as a feature vector. The tested network configurations are
11-10-10-1, 11-20-20-1, 11-30-30-1 and 11-40-40-1.

Network configuration TPR TNR PPV

11-10-10-1 57% 100% 80%
11-20-20-1 52% 44% 42%
11-30-30-1 66% 64% 58%
11-40-40-1 63% 100% 100%

TABLE III: Statistics for network configuration evaluation
against training data.

VII. CONCLUSION

In conclusion, experiments with bit-serial neurons con-
firm that an extremely small logic system can success-
fully implement effective epileptic seizure detection. The
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Network Configuration TPR TNR PPV

11-10-10-1 75% 33% 43%
11-20-20-1 50% 50% 40%
11-30-30-1 25% 44% 10%
11-40-40-1 53% 33% 80%

TABLE IV: Statistics for network configuration evaluation
against additional data.

key benefit of a dedicated neural processor compared to
known, equivalent general-purpose processors, is that very
small control logic and a low bit-precision are sufficient to
obtain correct operation. Multiple tests have been conducted
with various network configuration to test the feasibility of
detecting epilepsy when using the proposed approach. Future
work involves further investigation into suitable sizes and
accuracies of bit-serial FNNs which will be followed by a
development of a low-power ASIC.
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